Part Number Hot Search : 
S0MCF2PC FC6155 2N540 520003 05DB2 8ETU04 50110 ZMY75
Product Description
Full Text Search
 

To Download IRFR3704ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.kersemi.com 1 12/03/04 IRFR3704ZPBF irfu3704zpbf hexfet   power mosfet applications benefits  very low r ds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power  high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use  lead-free  i-pak irfu3704z d-pak irfr3704z v dss r ds(on) max qg 20v 8.4m 9.3nc absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case ??? 3.1 c/w r ja junction-to-ambient (pcb mount)  ??? 50 r ja junction-to-ambient ??? 110 300 (1.6mm from case) -55 to + 175 48 0.32 24 max. 60  42  240 20 20

 2 www.kersemi.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 20 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.015 ??? v/c r ds(on) static drain-to-source on-resistance ??? 6.7 8.4 m ? ??? 9.2 11.4 v gs(th) gate threshold voltage 1.65 2.1 2.55 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -5.5 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 41 ??? ??? s q g total gate charge ??? 9.3 14 q gs1 pre-vth gate-to-source charge ??? 3.0 ??? q gs2 post-vth gate-to-source charge ??? 1.1 ??? nc q gd gate-to-drain charge ??? 2.7 ??? q godr gate charge overdrive ??? 2.5 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 3.8 ??? q oss output charge ??? 5.6 ??? nc t d(on) turn-on delay time ??? 41 ??? t r rise time ??? 8.9 ??? t d(off) turn-off delay time ??? 4.9 ??? ns t f fall time ??? 12 ??? c iss input capacitance ??? 1190 ??? c oss output capacitance ??? 380 ??? pf c rss reverse transfer capacitance ??? 170 ??? avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 60  (body diode) a i sm pulsed source current ??? ??? 240 (body diode)  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ???1319ns q rr reverse recovery charge ??? 4.2 6.3 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 20v v gs = -20v conditions 4.8 max. 41 12 ? = 1.0mhz conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a  v ds = v gs , i d = 250a v ds =16v, v gs = 0v v ds = 16v, v gs = 0v, t j = 125c clamped inductive load v ds = 10v, i d = 12a v ds = 10v, v gs = 0v v dd = 10v, v gs = 4.5v  i d = 12a v ds = 10v t j = 25c, i f = 12a, v dd = 10v di/dt = 100a/s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. mosfet symbol v gs = 4.5v, i d = 12a  ??? v gs = 4.5v typ. ??? ??? i d = 12a v gs = 0v v ds = 10v

 www.kersemi.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.4v 20s pulse width tj = 25c vgs top 10v 6.0v 4.5v 4.0v 3.3v 2.8v 2.6v bottom 2.4v 0.01 0.1 1 10 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.4v 20s pulse width tj = 175c vgs top 10v 6.0v 4.5v 4.0v 3.3v 2.8v 2.6v bottom 2.4v 2 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 10v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v

 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 02468101214 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 18v v ds = 10v i d = 12a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse

 www.kersemi.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci= i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.8190 0.000092 1.6018 0.000698 0.6592 0.009033 0.0418 0.046618

 6 www.kersemi.com d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 160 180 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.9a 6.5a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + -

 www.kersemi.com 7 fig 15. 
 



   for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr

 8 www.kersemi.com control fet  

   

     
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic

 www.kersemi.com 9  

  

  12 in the assembly line "a" as s e mb led on ww 16, 1999 example: wi t h as s e mb l y this is an irfr120 lot code 1234 ye ar 9 = 199 9 dat e code we e k 16 part number logo int ernational rect ifier as s e mb l y lot code 916a irf u120 34 year 9 = 1999 dat e code or p = de s i gnat e s l e ad-f r e e product (optional) note: "p" in as s embly line pos ition indi cates "l ead-f ree" 12 34 we e k 16 a = as s e mb l y s i t e code part number irf u120 line a logo lot code as s e mb l y int ernat ional rect ifier

 10 www.kersemi.com  
   0       
 -  .  
  assembly example: with assembly this is an irfu120 ye ar 9 = 199 9 dat e code line a week 19 in the assembly line "a" as s e mbl e d on ww 19, 1999 l ot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in as s embly line position indicates "lead-free"  56 78 as s e mb l y lot code rectifier logo international irfu120 part number we e k 1 9 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = designates lead-free product (optional)

 www.kersemi.com 11 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.57mh, r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.  

  0       
 -  . tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR3704ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X